
Project Maux Mk.II
“I 0wn the NIC, now I want a shell!”

Arrigo Triulzi
arrigo@sevenseas.org

© Arrigo Triulzi 2008 1st November 2008

mailto:arrigo@sevenseas.org
mailto:arrigo@sevenseas.org

“I have a Cunning Plan”

Background concepts

Last year’s work (NIC takeover)

Evolving Project Maux: Project Maux Mk.II

Identification and defence

Future work

© Arrigo Triulzi 2008

How to read these slides
This is not a funded project but personal
curiosity-driven what-if research,

Conceptually similar to the “nth Country
Experiment” at LLNL in the 1960s: given
open literature how quickly can two Physics
PhD candidates develop a working nuke?

Given no prior knowledge, “the Internet”, a
cheap 10-pack of NICs and a PC can we
develop the ultimate rootkit?

© Arrigo Triulzi 2008

Background concepts
NICs are becoming more intelligent:

firmware is becoming more sophisticated,

bugs creep into firmware leading to
updates,

updates on a deployed card are desirable
(especially WiFi...).

So there must be a firmware loader...

© Arrigo Triulzi 2008

Background concepts
Video cards are becoming smarter:

gamers want a “better experience”
therefore accelerated graphics,

the GPUs are becoming sophisticated,

there is plenty of RAM to play with,

a vendor ships a development toolkit...

© Arrigo Triulzi 2008

Project Maux Mk. I
(2006-2007)

A particular PCI NIC (Broadcom “Tigon”-
based):

MIPS CPU, very little on-board RAM,

SDK available on web,

Modified Linux drivers courtesy of CERN,

Cheap 10-pack available.

© Arrigo Triulzi 2008

Project Maux Mk. I
(2006-2007)

SDK lead to development of “alternative”
firmware (aka “Project Maux”):

hook to IP checksum routines,

add “sniffer” which copies packets into
scratch RAM (circular buffer design).

Only approximately 5s-30s sniffing on loaded
NIC then circular buffer fills up.

© Arrigo Triulzi 2008

Project Maux Mk. I
(2006-2007)

Major issues with project Maux:

lots of NICs blown in the process,

the circular buffer is ridiculously small,

loader requires Ring 0,

sniffing alone is not very useful.

© Arrigo Triulzi 2008

So what?
A bit like a 235U device: easy to build but
required lots of hardware,

an excellent proof-of-concept strongly
suggesting that the firmware avenue was
worthwhile,!

it is an “obvious” entry point into the
firmware hacking scenario,

not that many players cover most hardware
(Broadcom, RTL, Intel, Via, etc.).

© Arrigo Triulzi 2008

Defences

Security through obscurity? Forget it, Google
will (eventually) find it,

Assume your firmware SDK is in hostile
hands,

Think about drivers sanity-checking
hardware (need Secure Computing to really
work)...

...but don’t assume PKI will save you...
© Arrigo Triulzi 2008

Evolving Project Maux

We cannot fix anything at all on the NIC!

Blowing NICs is an inevitable consequence
of not having documentation,

We can’t increase the RAM on the MIPS
embedded controller,

The loader only runs in Ring 0,

No RAM means no extra functionality.
© Arrigo Triulzi 2008

Evolving Project Maux
Look elsewhere given the following
constraints:

No OS support required,

Almost invisible to the CPU,

“Remote shell” capability,

Must be stealthy!

This is where we go for the 239Pu design.
© Arrigo Triulzi 2008

Project Maux Mk.II

The solution is to look at another PCI board!

nVidia GPU development kit:

not the “OpenGL/Direct X” stuff...

but the “GPU computing” kit (aka “CUDA”)!

This gives us access to a CPU with
substantial amounts of RAM (128Mb at
least)...

© Arrigo Triulzi 2008

Project Maux Mk.II

Overall design outline:

quasi-SSH communications with quasi-SSH
daemon running in GPU,

NIC filters out “relevant” packets, forwards
them to GPU via PCI-to-PCI transfer,

quasi-SSH interprets them.

© Arrigo Triulzi 2008

Project Maux Mk.II

Firmware

Maux

NIC

GPU

PCI
bus

OS driver

GPU code

Maux

Hook IP checksum

PCI-to-PCI

quasi-SSH in GPU

© Arrigo Triulzi 2008

Project Maux Mk.II

NIC firmware modification:

same technique as old “sniffer”: hook IP
checksum (every IP packet triggers it),

grab packet, check magic,

pass “magic packet” to GPU via PCI-to-PCI
transfer

© Arrigo Triulzi 2008

Project Maux Mk.II

check magic:

if the IP ID is 0xbeef and

the IP timestamp option has a flag value
of 0x3, IP address of 0x50b1463d and a
timestamp of 0x06026860.

this causes the firmware to forward the
packet off to the GPU.

© Arrigo Triulzi 2008

Project Maux Mk.II

GPU gets magic packet:

1st packet seen from this IP? Then send
back a “suitable” response to say we are a
“Mauxed” system with details of OS and
capabilities,

otherwise interpret as part of a session.

© Arrigo Triulzi 2008

Project Maux Mk.II

Introducing nicssh 1.0 (a quasi-SSH daemon):

no DH key exchange, in fact no
authentication!

Blowfish with static 128-bit key (static as
in “static in the GPU code being injected”),

basic command shell with readline and
limited number of commands.

© Arrigo Triulzi 2008

nicssh 1.0

nicssh handshake:

ICMP Echo Request with “magic”,

respond with correct ICMP Echo Reply,
but with “magic” in the header,

nicssh waits for 1st session packet.

Note: the OS is totally oblivious to the above
and never sees the ICMP packets.

© Arrigo Triulzi 2008

nicssh 1.0
nicssh capabilities:

memory inspection (GPU RAM and system
RAM),

sniffer on NIC sending data to VRAM,

sending of data via the network,

cleanup (extremely flaky),

readline (tab completion and history).
© Arrigo Triulzi 2008

nicssh 1.0

“Stealth” capabilities:

if negotiated then use special port for
traffic, otherwise default is 80,

when using “web ports” (pre-defined to 80,
8080, 3128) then use rwwwshell GET
method.

More planned (Nushu, sniffing backdoor...).
© Arrigo Triulzi 2008

nicssh 1.0

archimede:~/nicssh$ nicssh 10.4.4.233
Connecting to 10.4.4.233
ICMP Echo Reply from OS - no nicfw
archimede:~/nicssh$ nicssh 10.4.4.234
Connecting to 10.4.4.234
ICMP Echo Reply from nicfw (Windows system)
Requesting tcp/80 with cloaking
nicssh> ?
help memory* sniff* send* reboot cleanup quit
nicssh>

first “magic packet” “magic packet” back

“stealth” mode “shell” with basic help
© Arrigo Triulzi 2008

Installation...

Good question with no good answer at the
time (March 2008). Some ideas:

fake driver update with phishing website
to entice downloaders (think “ehanced
driver for gamers”),

virus with injection payload,

infected Linux distribution.
© Arrigo Triulzi 2008

Installation...

Now for something more esoteric:

Broadcom firmware has traces of “remote
update” functionality...

Drive-by injection via WiFi, WiFi driver
exploit, PCI-to-PCI into the NIC?

The second of the two would be lethal for
laptops.

© Arrigo Triulzi 2008

Uninstall?

What if you wish to remove all traces of
modification?

Sorry, no (smart) answer at the moment
(March 2008) for the NIC.

GPU? Just reboot (cold boot perhaps).

Should drivers always inject fresh firmware?

© Arrigo Triulzi 2008

Is it worth it?
Short answer: definitely not in 2008.

In the longer term this is an ideal A-V
evasion technique for bots:

install bot, zap firmware, disappear. New
A-V signatures? Too late. OS reinstall?
Irrelevant.

bot functionality in VRAM and on GPU! OS
is pristine and irrelevant.

© Arrigo Triulzi 2008

Is it worth it?
What about virtualisation?

VM escape: working on something named
the “Jedi packet trick”...

Smaller number of server NICs make it an
attractive “market” from an ROI
perspective,

Hypervisor is “Just Another OS”,

“A Hypervisor” allegedly runs “Not Linux”...
© Arrigo Triulzi 2008

Is it worth it?
What about firewalls?

90+% of world’s firewalls run on the PC
architecture and therefore...

extension of “Jedi packet trick” to NIC-to-
NIC transfers!

This could also extend to IDS/IPS systems...
one parser vulnerability, NIC takeover, game
over!

© Arrigo Triulzi 2008

Is it worth it?
Get nastier: what about the highly integrated
support chips on the motherboard?

MITM of PCI-to-PCI transfers,

crypto accelerators need data and key to be
sent to them to “accelerate”...

grab data being written to SATA...

Why? ROI for theft looks promising: keylogger++

© Arrigo Triulzi 2008

Is it worth it?
Two scenarios:

Government: exercise for the reader.

Criminal organisations:

Targeted attacks “for rent”,

“Transparent” bots,

Pre-loaded bots: how difficult is it to
attack Dell’s pre-loaded image loader?

© Arrigo Triulzi 2008

But we use PKI!
PKI structure (assumed):

signed firmware with a public key embedded
in “secure” area of the chip,

offer semi-custom parts to OEMs,

OEMs roll-out their own modified firmware,

so you have multiple public keys on chip.

One question: how do you push a CRL?
© Arrigo Triulzi 2008

PKI, an interesting note

In the previous PKI scenario the problem is
obviously pushing a CRL off to end-users.

The scenario was thought up independently
and then was discovered to match the
concerns of a manufacturer...

Think back to the Nth Country Experiment...
I might not be the only one thinking about it.

© Arrigo Triulzi 2008

Identification
On the network?

Currently as good as your detection of
rwwwshell,

Can be improved due to “magic” needed
for NIC firmware to redirect to GPU.

On the system?

Anyone counting PCI-to-PCI transfers?

© Arrigo Triulzi 2008

Defence
The marketing defence: JIT manufacturing
means different cards in different PCs and
“same model different chipset” making
targeting extremely difficult,

Firmware verification during update (c.f.
Intel’s microcode update vs. AMD microcode
update),

Trusted computing if extended to cover
firmware verification (see John Heasman).

© Arrigo Triulzi 2008

Defence
Learn from OS/VM (now zVM) providing fine
virtualisation services since 1968:

true hardware-aided virtualisation,

protection rings at the hypervisor level,

See IBM’s research (Karger paper on alpha
PALcode and virtualisation).

“A virtualisation so good you can virtualise it”

© Arrigo Triulzi 2008

Defence
The Secure Computing Initiative:

currently does not appear to cover
firmware! Obviously needs extending...

the PCI bus could well become the “new
Internet” for malicious communications,

check all firmware, not just the obvious.

Interesting question: how do you boot safely?

© Arrigo Triulzi 2008

Project Maux Mk.II
unsolved issues

Elegant installation process:

Currently by hand (!!), no automation...

NIC long-term stability testing:

Never ran for more than a week.

GPU code persistence:

Reboot kills us at the moment.

© Arrigo Triulzi 2008

Project cost

“Another year of Sundays”:

approximately 100 man/hrs,

Project Maux was approx. 150 man/hrs,

$0 hardware costs (Project Maux: $100),

MVT: Google.

© Arrigo Triulzi 2008

Future work

GPU code persistence by using John
Heasman’s ACPI/BIOS work?

GPU code persistence using hidden sectors
on disk loaded at boot via NIC firmware
BIOS initialisation routine?

More sophisticated nicssh functionality (with
authentication?)

© Arrigo Triulzi 2008

Jedi packet trick™ spoiler
Drivers (sometimes) assume hardware is badly
designed, perhaps badly behaved, but not malicious...

NIC takeover followed by driver takeover...

Driver takeover means Ring 0...

Ring 0 means kernel...

Who says that there has to be a single TCP/IP
stack in the kernel? “There is no packet here, you
will let it through”☺

You heard it here first™
© Arrigo Triulzi 2008

Thanks

My family ∀ their ∞ patience while I play
with my toys,

Toby for keeping the hard questions coming,

Maya for project naming,

C8H10N4O2

Spoiler: the Nth Country Experiment nuke design by the PhDs would have gone “b00m!” and was indeed initially meant to be tested “for real” at the NTS to validate this.

© Arrigo Triulzi 2008

References
Michael Zalewski, “Silence on the Wire: A Field Guide to Passive Reconnaissance and
Indirect Attacks”, No Starch Press.

Broadcom firmware development kit: http://www.broadcom.com/products/
communications_processors_downloads.php

The “GPU computing” kit (aka “CUDA”): http://www.nvidia.com/object/cuda_get.html

Joanna Rutkowska, http://theinvisiblethings.blogspot.com/atom.xml

“dailydave” mailing list VPC discussion, http://archives.neohapsis.com/archives/
dailydave/2008-q1/0083.html (start of thread)

Paul A. Karger, “Performance and Security Lessons Learned from Virtualising the
Alpha Processor”, ISCA ’07

© Arrigo Triulzi 2008

http://www.broadcom.com/products/communications_processors_downloads.php
http://www.broadcom.com/products/communications_processors_downloads.php
http://www.broadcom.com/products/communications_processors_downloads.php
http://www.broadcom.com/products/communications_processors_downloads.php
http://www.nvidia.com/object/cuda_get.html
http://www.nvidia.com/object/cuda_get.html
http://theinvisiblethings.blogspot.com/atom.xml
http://theinvisiblethings.blogspot.com/atom.xml
http://archives.neohapsis.com/archives/dailydave/2008-q1/0083.html
http://archives.neohapsis.com/archives/dailydave/2008-q1/0083.html
http://archives.neohapsis.com/archives/dailydave/2008-q1/0083.html
http://archives.neohapsis.com/archives/dailydave/2008-q1/0083.html

References
Van Hauser (THC) rwwwshell, http://freeworld.thc.org/papers/fw-backd.htm

Opteron Exposed: Reverse Engineering AMD K8 Microcode Updates, http://
www.securiteam.com/securityreviews/5FP0M1PDFO.html

Papers by John Heasman (ACPI, BIOS and PCI rootkits):

http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Heasman.pdf

http://www.nextgenss.com/research/papers/
Implementing_And_Detecting_A_PCI_Rootkit.pdf

nth country experiment, http://www.gwu.edu/~nsarchiv/news/20030701/nth-
country.pdf

Rowan Atkinson, “Blackadder”, BBC TV series.
© Arrigo Triulzi 2008© Arrigo Triulzi 2008

http://freeworld.thc.org/papers/fw-backd.htm
http://freeworld.thc.org/papers/fw-backd.htm
http://www.securiteam.com/securityreviews/5FP0M1PDFO.html
http://www.securiteam.com/securityreviews/5FP0M1PDFO.html
http://www.securiteam.com/securityreviews/5FP0M1PDFO.html
http://www.securiteam.com/securityreviews/5FP0M1PDFO.html
http://www.blackhat.com/presentations/
http://www.blackhat.com/presentations/
http://www.nextgenss.com/research/papers/Implementing_And_Detecting_A_PCI_Rootkit.pdf%0D
http://www.nextgenss.com/research/papers/Implementing_And_Detecting_A_PCI_Rootkit.pdf%0D
http://www.nextgenss.com/research/papers/Implementing_And_Detecting_A_PCI_Rootkit.pdf%0D
http://www.nextgenss.com/research/papers/Implementing_And_Detecting_A_PCI_Rootkit.pdf%0D
http://www.gwu.edu/~nsarchiv/news/20030701/nth-country.pdf
http://www.gwu.edu/~nsarchiv/news/20030701/nth-country.pdf
http://www.gwu.edu/~nsarchiv/news/20030701/nth-country.pdf
http://www.gwu.edu/~nsarchiv/news/20030701/nth-country.pdf

